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Universality for the breakup of invariant tori in Hamiltonian flows
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In this article, we describe a new renormalization-group scheme for analyzing the breakup of invariant tori
for Hamiltonian systems with two degrees of freedom. The transformation, which acts on Hamiltonians that are
guadratic in the action variables, combines a rescaling of phase space and a partial elimination of irrelevant
(nonresonantfrequencies. It is implemented numerically for the case applying to golden invariant tori. We find
a nontrivial fixed point and compute the corresponding scaling and critical indices. If one compares flows to
maps in the canonical way, our results are consistent with existing data on the breakup of golden invariant
circles for area-preserving mag§1063-651X98)10006-5

PACS numbgs): 05.45:+hb, 64.60.Ak

[. INTRODUCTION The renormalization we define, following the scheme pro-
posed in Ref[11], is similar in spirit to the block spin trans-

In Hamiltonian systems with twgor more degrees of formation in statistical mechanics, in the sense that it uses a
freedom, smooth invariant tori typically persist under smallprocess of “elimination and rescaling.” The elimination of
perturbationg1-4]. The most stable tori appear to be the irrelevant frequencies is done by using canonical transforma-
ones for which the frequency ratio is a quadratic irrationaltions as in Kolmogorov-Arnold-MosefKAM) theory. The
such as the golden mean. As the strength of the perturbatidrequencies we want to eliminate are the nonslow modes
passes some critical value, these tori are observed to exhil{ihonresonant part of the perturbatipne., the modes which
self-similar scaling behavior, and then they break[&®]. only affect the motion for a short time. The slow modes
To study such critical behavior, several renormalization(resonant part of the perturbatjorwhich produce the small
schemes have been propo$@d-13|. denominators in KAM theory, are shifted towards the non-

The idea is to use a transformati@hthat maps a Hamil- slow modes by a rescaling. They can thus be eliminated by
tonianH into a rescaled HamiltoniaR(H), in such a way iteration. The rescaling is the same as in R¢fd—-13. It
that irrelevant degrees of freedom are contracted. The tran#cludes a shift of the resonances and a rescaling of the ac-
formation R should have roughly the following properties: tions and of the energy. Here and in what follows, the word
R has an attractive integrable fixed poiht, that has a “resonances” refers to the frequency vectars=(py,0dy)
smooth invariant torus of a given frequency. Every Hamil-defined by the continued fraction approximapigqy for the
tonian in its domain of attractio® has a smooth invariant frequency ratio of the invariant torus. The corresponding
torus of the desired frequency. Another nonintegrable fixectlosed orbits accumulate at the invariant toflid], and are
point H, lies on the boundary ob, also called the critical often used in numerical investigations.
surface, and this nontrivial fixed point attracts the Hamilto- We consider the following class of Hamiltonians with two
nians on the critical surface. Figure 1 shows schematicallflegrees of freedom, quadratic in the action variables
the expected nature of the renormalization flow in the space=(A;,A;) and described by three scalar functions of the
of Hamiltonians. The consequence of such a renormalanglese=(¢1,,) € T? (the two-dimensional torus param-
ization-group picture is universal behavior in one-parameteetrized by[ 0,27)?):
families (of Hamiltonian$ that cross the critical surface. In
the case at hand, we expect these universal properties to be \ /
associated with the breakup of smooth invariant tori. This \ /
has to do with the fact thak involves a scaling of phase y /
space: At the fixed poirtl, this scaling is trivial, reflecting
the trivial local scaling properties of a smooth invariant
torus. Other Hamiltonians that approakly under iteration
of R scale asymptotically in the same way. Thus, every
Hamiltonian on the “trivial side” of the critical surface is
expected to have a smooth invariant tofw® only consider
the torus for a specific rotation vecjoBy contrast, the fixed
point described in this paper scales in a nontrivial way, and
the same holds asymptotically for every Hamiltonian on the
critical surface. Thus, we expect these Hamiltonians to have

a nonsmooth invariant torus. The analysis of the renormaliza- ’
tion for area-preserving map9] gives support to the valid- FIG. 1. Renormalization flow in the space of Hamiltonighsl)
ity of these ideas. associated with the universal classaf§=(1/y,—1).
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1
H(A,¢):§m(¢)(Q~A)Z+[mO+ (@) Q2]-At+f(e),
(1.7

wherew, is the frequency vector of the considered torus, and
Q=(1,a) is some other constant vector, not parallelkig

This family of Hamiltonians has been investigated in
Refs.[12,13,19. In particular, a KAM theorem was proved
for this family in Ref.[15] based on Thirring’'s approach
[16], in which the KAM transformations are constructed
such that the iteration stays within the space of Hamiltonians
quadratic in the actions. In order to prove the existence of a
torus with frequency vectaw, for Hamiltonian systems de-
scribed by Eq(1.1), it is not necessary to eliminata, but FIG. 2. Nonslow modesin the gray paitand slow modegin
only g and f: One has to find a canonical transformation the white pant associated withwy=(1/y,—1).
such that the equations of motion expressed in the new co-
ordinates show trivially the existence of this torus. For the Il. KAM-RENORMALIZATION-GROUP
family of Hamiltonians(1.1), if one takesg andf equal to TRANSFORMATION
zero, then the resulting equations of motion are

The renormalization scheme described in this section is
for a torus of frequency vectow,=(1/y,—1) where y

d_A: _ E &_m(Q_A)zy d—‘ozm(go)(ﬂ-A)QﬂLwo. =(1+/5)/2. It is straightforward to adapt it to other re-
dt 2 d¢ dt duced quadratic irrational4.7].
(1.2 Our transformation is composed of four steps.

. o _ ~ (1) A canonical change of coordinates, which acts on the
ThenA=0 defines an invariant torus, and the motion on thisFourier mode e'”'¢ for a resonancer=w, by a shift
torus is quasiperiodic with frequency vec@p (even if the 353, ,. The resonances fck<2 will be eliminated in
resulting Hamiltonian is not integrable _ _ step(4), together with all the other frequency vectorsl in
The elimination off andg can be achieved with canoni-  (2) A generalized canonical change of coordinates which
cal transformations with generating functions that are lineagorresponds to a rescaling of the action variatfes

in the action variables, and thus map the family of Hamilto-  (3) A normalization corresponding to a rescaling of the
nians(1.1) into itself. This is very convenient numerically, as energy(or time).
one only works with three scalar functions g, andf. The The composition of the three steps described so far de-
only approximation involved in our numerical implementa- fines a map i, g, f,a)—(m’,g’,f',a’).
tion of the transformation is a truncation of the Fourier series (4) A KAM transformation (canonical change of vari-
of these functions; e.g., we approximate ables that eliminates all nonslow modes fray andf’; i.e.,

the new functiong” andg” are in the range of ", wherel™

iv. is a projection operator acting on a scalar functfoaf the
— lv-@
f(e) 3‘22 f.e (13 angles as
by I"f(o)= >, fe”e. (2.1
vel ™
fl=tl(p)= E felve, (1.9 Concerning ste4) we note that, for certain purposes, it can

vely be desirable to eliminate the nonslow modes frath as

well. But such a step generates terms of arbitrary order in the
whereC ={ve 7?| |v,|<L,|v,|<L}. actions, which drastically complicates the analy4ig].

In this paper, we focus on the frequency veci®p We now give a more detailed description of the four steps

=(1/y,—1), associated with the golden meap=(1 that define the transformation. The first step is motivated by
+/5)/2. We choose the set of frequenciesdescribing the the observation that periodic orbits for the resonant frequen-
nonslow modes as the union of the two quadrants in theies{»,} accumulate geometrically at tieritical) w, torus.

plane (v;,v,) that contain the linear span @j,: This suggests that the appropriate scaliimgthe angle vari-
ables is related to a shift in the sequence of resonances. In
|~ ={ve 7?|v,v,<0}. (1.5)  order to implement the shif— »,_, mentioned in stepl),
we use the fact that the continued fraction approximants for
The setl ~ is depicted in Fig. 2. the golden meary are y,=Fy.1/Fy, whereF, is thekth

This “frequency cutoff” restricts to Fourier modeshe  Fibonacci number. These numbers can be defined recursively

nonslow modesthat can be eliminated in one renormaliza- by the equation

tion step, without running into small denominator problems.

As is common with cutoffs, there is not a single “natural” (Fkﬂ) =N( Fi ) with N:(l 1) 2.2
choice. Other possible choiceslof will be mentioned later. Fy Fro1 1 0/’ '
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starting withF,=0 andF,;=1. In other words, if we define sider first the case wherg, and f, depend on asmal)
1,=(0,1), theny,=Nw,_, for k=1. Thus the desired shift parameteg,, in such a way that™ g, andl™ f,, are of order
v, is induced by the linear transformatidh 2, and  O(e,). The idea is to eliminate the nonslow modegpand
the canonical transformation we are looking for is f,to first orderine,, at the expense of adding terms that are

(A, ©)—(N"2A,N?¢). of orderO(e,,) in the slow modes and of ord€(&2) in the
As the renormalization changes the scale, some of thaonslow modes.
slow modes become nonslow modesg., (1,1) is mapped We  will work  with Lie  transformations

into (0,1) which is an element df ]. We remark that there U, :(¢,_1,Ar—1)—(¢@n,A,), generated by a functio®, lin-
is no intrinsic sharp difference between the slow and nonear in the action variables, of the form

slow modes. The boundary can be set at different places. We

have chosen to include the coefficients (0,1) and (1,0) Si(A @) =Yn(@) Q' -A+Z, (@) +a, 2" ¢, (2.8
among the nonslow moded {, to be eliminated by the
KAM transformation and (1,1) and (2,1) among the slow
modes. But conceptually and practically there would be n
difficulty to include, e.g., (1,1) and (2,Xpr any fixed finite
number of resonancksamong the nonslow modes. More
generally, other choices in the splitting {d'*" ¢} into slow

characterized by two scalar functio¥fs, Z,, and a constant
fn- The expression of the Hamiltonian in the new variables
Is obtained by the following equatidi 9,20

Hn+1:Hn°Un:e+§an

and nonslow modes should lead to the same results provided, 1

e.g., that the ratidw|/| wo- v| is bounded on ~ and thatN ¥ =Hn+{Sh Ho} + 57 {Sh S Halbt -+ (2.9
contracts vectorg in the complement of ~ for some fixed '

k>0 [11]. A consequence of the linearity &, in A is that the Hamil-

The linear shift of the resonances multiplieg by v >  tonianH,,. , is again quadratic in the actions and of the form
(@ is an eigenvector df); therefore we rescale the energy

by a factory? in order to keep the frequency fixed @f. A 1 , an2 ,

consequence of the shift of the resonances is ®at Hn+1(A@)=5Mn1(@)(R7-A)+[@o+0ns (@) Q7] A

=(l,a) is changed intoQ'=(la’), where a'=(«a

+1)/(a+2). +fnr1(e). (2.10
Then we perform a rescaling of the action variables: We\Ne notice that the vecta®’

change the Hamiltoniahl into remains unchanged from one

step to the next. The functions,, Z,,, and the constard,,
are chosen in such a way thatg,,.; andl™ f,, 4 vanish to
) order O(e,,); see the Appendix for details. Consequently,

1”944 andI™ f,,, are of orderO(sSn), wheree, denotes
with A=\(H) such that the mean value of’, defined as  the order ofi g’ andI™ f’. If & is small, an iteration of this
) procedure should define a canonical transformatidop
<m,>:j de m (o) 2.3 =U oUj0---oU,0--- such that the Hamiltonian expressed
T2(217)2 ®) : in these new variables has only slow modegiandf. In
our numerical implementation this is indeed the case, even
is equal to 1. Since the rescaling of energy and the $ift without small parameters.

- A
H(A#’):)\H(X.so

transform the quadratic term of the Hamiltonian ing®(2 In summary, our renormalization-groyRG) transforma-
+a)’m(¢)(Q'-A)?/2, this condition leads ton=vy?(2 tion acts as follows: First, some of the slow modessonant
+a)Xm). part of the perturbationare turned into nonslow modes by a
In summary, the first three steps of our renormalizatiorfrequency shift and a rescaling. Then, a KAM-type iteration
transformation rescalm, g, f, andQ=(1,a) into eliminates these nonslownonresonantmodes, while pro-
ducing some new slow modes.
. m(N?¢) »
m'(¢)= <m> ' (2.4 11l. DETERMINATION OF THE CRITICAL COUPLING:
FIXED POINT OF THE KAM-RG TRANSFORMATION
’ _ 2 -2
g'(e)=7(2+ a)g( ¢) @9 We start with the same initial Hamiltonian as in Refs.
t(@) =72+ )Xmi(N"2p), (29 81213
1
,_1te H(A )= (Q-A)?+ wy-A+ef(g), (3.9
a Zm. (27) 2

whereQ=(1,0), wy=(1/y,—1), y=(1+/5)/2, and a per-

We remark that the ma@— Q' given by Eq.(2.7) has an turbation

attractive fixed poin®2, =(1,y 1), which is an eigenvector

of N2, with eigenvaluey?>1. f(¢)=cog v, @)+ Cog vy @), (3.2)
The fourth step is carried out via an iterative procedure,

similar to a Newton algorithm. We start witH,=H’. To  wherev;=(1,0) andv,=(1,1). We represent all the func-

simplify the description of the iteration stéh—H, .1, con-  tions by their Fourier series truncated by retaining only the
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TABLE |. Parameters associated with the breakup of noble tori.

L  Critical valuee (L) Area multiplier Unstable eigenvalue 20
0.027590 18.828171 2.650221
3 0.027625 18.842654 2.649660
5 0.027579 18.823481 2.652722
8 0.027588 18.825034 2.649653
12 0.027590 18.829142 2.650484 )
13 0.027590 18.827464 2.650082
20 0.027590 18.828203 2.650234
21 0.027590 18.827772 2.650151
33 0.027590 18.828177 2.650226
34 0.027590 18.827910 2.650175
coefficients in the squar@ which contains (2+1)? Fou- -30 £
rier coefficients. For fixed., we take successively larger 3 = 3
couplingse and determine whether the KAM-RG iteration m
converges to a Hamiltonian with=0, g=0 (trivial fixed
point), or whether it divergesf(g_,oo)_ By a hisection pro- FIG. 3. Weight of the Fourier coefficients Gh* . white

cedure, we determine the critical coupling(L). We repeat <19;10’ gray 'e"els[lo_m'l?:]' [10°7,10°°], [10°°10°°],
the calculation with larger numbers of Fourier coefficients, tol 107,5%1077], black>5x10"%.

obtain a more accurate approximation. Table | lists some

values ofe(L). For instance, fot.= 10, the result is given If the renormalization-group picture is correct, then all the
with seven digits; as a comparison, the method developed ifglevant information about critical tori with frequency vector
Refs.[12,13 yields four significant digit$in order to obtain ~ @o=(1/y,—1) is contained in the nontrivial fixed poikt, .
seven significant digits with this method one needs to calcukn particular,H, determines the observed critical scaling of
late £4(L) up to L=234]. Moreover, we observe the disap- phase spacgs,6,8. For the scaling factok, =\(H, ), we
pearance of the oscillations of Fig. 1 of REf2]; that is to  obtain numericallyx,, [18.827 910,18.828 177the value
say, the present method converges much faster than the onbtained for area-preserving maps\is=18.828 171(given

of Refs.[12,13. in Refs.[5,6,9).

By iterating the transformation starting from a point on
the critical surface, we observe that the process converges to
a nontrivial fixed poinH, (or more generally to a nontrivial
fixed set related to this nontrivial fixed point by symmetries \We have shown that in the renormalization-group ap-
[13,21)), which we characterize by the Fourier coefficients ofproach to critical invariant tori, a partial elimination of non-
the three functionsn, , g, , andf, andQ,=(1,y"1). resonant frequencies leads to substantial qualitative and

Figures 3 and 4 show the weight of the Fourier coeffi-quantitative improvements. Compared with previous
cients ofm, . We observe that these coefficients decreasgchemes that have been studied numerically, our new
only slowly in the direction ofw, and, in particular, along KAM-RG transformation yields more accurate results and a
the rescaled resonanchs “»;, k=0, which indicates that better defined domain of attraction for the nontrivial fixed
m, is not analytic. This is due to the fact that our transfor-point. Conceptually it is close to the type of transformations
mation does not eliminate the nonslow modesroffor the  used for the study of critical phenomena in statistical me-
reasons mentioned earlier chanics.

Figures 5 and 6 show the weight of the Fourier coeffi- We have implemented our transformation for the case of
cients for the functiong, andf, , respectively. These co- tori with frequency vectorwy=(1/y,—1), wherey is the
efficients seem to decrease exponentially, which indicategolden mean. The extension to other reduced quadratic irra-
thatg, andf, are real analytic. Notice also that, by con- tionals should be straightforward and yields similar results. It
struction,g, andf, have only slow modes. also seems possible to extend our transformation to systems

At the fixed pointH, , we compute the relevant eigenval- with three[22] and more degrees of freedofhl], where
ues(critical exponentsfor the linearized KAM-RG transfor-  very little is known about the behavior of invariant tori under
mation. Since the breakup of invariant tori is observed inperturbations that are not necessarily srhaf,24.
one-parameter families of Hamiltonians, indicating that the There are several open questions within the present and
critical surface is of codimension 1, one expects to find aelated approaches that need to be clarified to obtain a com-
simple eigenvalues>1, and no other spectrum outside the plete theory of the phenomena: First, the relation between
open unit disk. This is precisely what we find numerically. the self-similarity of the nontrivial fixed point Hamiltonian
Table 1 lists the values ob as a function ofL. We obtain  and the geometrical properties of the critical invariant tori
6e[2.650 175,2.650 226 which is in agreement with the has to be established. At this stage, there is only numerical
value obtained by MacKay for area-preserving mggis(é  evidence for the coincidence between the critical coupling
=2.650 221). and scaling coefficients we obtain and the corresponding pa-

IV. CONCLUSION
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FIG. 4. Weight of the Fourier coefficients ah, : M(v;)
:maxu2|m”|- FIG. 5. Weight of the Fourier coefficients of, : white
<1019 gray levels[10°1°10° 7], [10°7,20°%], [107 5,10 3],
rameters associated with the critical torus as obtained in10-35x102], black >5x 102
Refs.[5,6] by explicit construction using the Greene’s crite-
rion. Another point concerns the regularity properties of the
nontrivial fixed point. The part of the Hamiltonian that is
quadratic in the actions does not seem to be analytic in the
angle variables. But the resulting truncation error seems tovith Y, Z, anda of orderO(e) to be determined. The gen-
have little effect on the accuracy of the calculated criticalerating functionS given by Eq.(2.8) is determined by the
parameters. We lack a good understanding of this observgrojection of Eqs.(A2) and (A3) on the space of nonslow
tion. modes. We recall that the condition is thaf’ andl™ g’ are
of orderO(e?). This leads to the following equations:

f'=f+wy dZ+awy- Q+0(?), (A3)
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g+ wg- Y +1" (M- §Z)+1 maN?=0. (A5)

30

APPENDIX: ONE STEP OF THE KAM ITERATION

In this appendix, we use the notatié= df/de.

We consider a Hamiltonian of the forrfl.1), with g
=(1-1")G+el" G and f=(1-1")F+&el F. The param-
etere is introduced for bookkeeping purposes only; it will be
set to 1 at the end. Our goal is to find a canonical transfor-
mation U such that the function$’ andg’ for the Hamil-
tonianH’ =H-°U have only slow modes, up to terms of order
O(&?). We perform a Lie transformation defined in Sec. II.
The expression of the Hamiltonian in the new variables is
given by Eq.(2.9):

vV
o

1
H' (A ,¢)=5m' (¢/) (@A) 2+ [wo+g'(¢) Q] A’ -30

-30 0 3
+f'(¢'), (A1) v

where FIG. 6. Weight of the Fourier coefficients of, : white
<1071 gray levels[1071°1077], [10°7,10°%], [10 5,10 3],
g'=g+wy IY+m(Q-dZ+aN?)+0(e?), (A2) [1035%x10 2], black>5x102.
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Equation(A5) determinesa: ()
H'=2> —. (A10)
(@) +(mQ- 8Z) =0
a=- W (A8 This can be expressed in terms of the image of the three

scalar functionsr,g,f) given by the following equations:
Moreover, the functiony andZ have only nonslow modes,

and are given by the following series: e [y
i=o I i=o0 I' i=o0 I'
= v
Z(¢) yg:r* wo-vf”e ) (A7) (m(o),g(0)1f(0)):(m,gj), (A12)
i _ mY=2mQ.- gy —YQ- dm, (A13)
Y@= 2 ——[g,+(mQ-Z),+m,a0’e"?,
vel x @o¥ gV=gQ- Y- YQ- dg+mQ- dZ+maQ2+ wy- Y,

(A8)

wherel™* =17\{0}. The transformed HamiltoniatAl) is
constructed by definingl®=H andH® fori=1,2,... by
the recursive relation

(A14)
fU=—-YQ.Jf+gQ-dZ+gaQ?+ wy- dZ, (Al5)
mitY=2mHQ. gy —yYQ- gm®, (Al6)

gitV=g"0Q.-agY-YQ 99" +m Q- 9z+mPa0?,
(A17)

fi*Y=—vQ.9f"V+9gVQ-dz+gVa0? (A18)

HID(A @) ={S(A,¢),H“)(A,so)}=%m“ o) (@-A)?
+g (@ Q-A+ 11T (g), (A9)

which leads to fori=1.
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