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Universality for the breakup of invariant tori in Hamiltonian flows
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In this article, we describe a new renormalization-group scheme for analyzing the breakup of invariant tori
for Hamiltonian systems with two degrees of freedom. The transformation, which acts on Hamiltonians that are
quadratic in the action variables, combines a rescaling of phase space and a partial elimination of irrelevant
~nonresonant! frequencies. It is implemented numerically for the case applying to golden invariant tori. We find
a nontrivial fixed point and compute the corresponding scaling and critical indices. If one compares flows to
maps in the canonical way, our results are consistent with existing data on the breakup of golden invariant
circles for area-preserving maps.@S1063-651X~98!10006-5#

PACS number~s!: 05.45.1b, 64.60.Ak
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I. INTRODUCTION

In Hamiltonian systems with two~or more! degrees of
freedom, smooth invariant tori typically persist under sm
perturbations@1–4#. The most stable tori appear to be th
ones for which the frequency ratio is a quadratic irration
such as the golden mean. As the strength of the perturba
passes some critical value, these tori are observed to ex
self-similar scaling behavior, and then they break up@5,6#.
To study such critical behavior, several renormalizat
schemes have been proposed@7–13#.

The idea is to use a transformationR that maps a Hamil-
tonianH into a rescaled HamiltonianR(H), in such a way
that irrelevant degrees of freedom are contracted. The tr
formationR should have roughly the following propertie
R has an attractive integrable fixed pointH0 that has a
smooth invariant torus of a given frequency. Every Ham
tonian in its domain of attractionD has a smooth invarian
torus of the desired frequency. Another nonintegrable fix
point H* lies on the boundary ofD, also called the critical
surface, and this nontrivial fixed point attracts the Hamil
nians on the critical surface. Figure 1 shows schematic
the expected nature of the renormalization flow in the sp
of Hamiltonians. The consequence of such a renorm
ization-group picture is universal behavior in one-parame
families ~of Hamiltonians! that cross the critical surface. I
the case at hand, we expect these universal properties
associated with the breakup of smooth invariant tori. T
has to do with the fact thatR involves a scaling of phas
space: At the fixed pointH0, this scaling is trivial, reflecting
the trivial local scaling properties of a smooth invaria
torus. Other Hamiltonians that approachH0 under iteration
of R scale asymptotically in the same way. Thus, ev
Hamiltonian on the ‘‘trivial side’’ of the critical surface is
expected to have a smooth invariant torus~we only consider
the torus for a specific rotation vector!. By contrast, the fixed
point described in this paper scales in a nontrivial way, a
the same holds asymptotically for every Hamiltonian on
critical surface. Thus, we expect these Hamiltonians to h
a nonsmooth invariant torus. The analysis of the renorma
tion for area-preserving maps@9# gives support to the valid
ity of these ideas.
571063-651X/98/57~6!/6612~6!/$15.00
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The renormalization we define, following the scheme p
posed in Ref.@11#, is similar in spirit to the block spin trans
formation in statistical mechanics, in the sense that it use
process of ‘‘elimination and rescaling.’’ The elimination o
irrelevant frequencies is done by using canonical transfor
tions as in Kolmogorov-Arnold-Moser~KAM ! theory. The
frequencies we want to eliminate are the nonslow mo
~nonresonant part of the perturbation!, i.e., the modes which
only affect the motion for a short time. The slow mod
~resonant part of the perturbation!, which produce the smal
denominators in KAM theory, are shifted towards the no
slow modes by a rescaling. They can thus be eliminated
iteration. The rescaling is the same as in Refs.@11–13#. It
includes a shift of the resonances and a rescaling of the
tions and of the energy. Here and in what follows, the wo
‘‘resonances’’ refers to the frequency vectorsnk5(pk ,qk)
defined by the continued fraction approximantspk /qk for the
frequency ratio of the invariant torus. The correspond
closed orbits accumulate at the invariant torus@14#, and are
often used in numerical investigations.

We consider the following class of Hamiltonians with tw
degrees of freedom, quadratic in the action variablesA
5(A1 ,A2) and described by three scalar functions of t
anglesw5(w1 ,w2)PT2

„the two-dimensional torus param
etrized by@0,2p)2

…:

FIG. 1. Renormalization flow in the space of Hamiltonians~1.1!
associated with the universal class ofv05(1/g,21).
6612 © 1998 The American Physical Society
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H~A,w!5
1

2
m~w!~V•A!21@v01g~w!V#•A1 f ~w!,

~1.1!

wherev0 is the frequency vector of the considered torus, a
V5(1,a) is some other constant vector, not parallel tov0.

This family of Hamiltonians has been investigated
Refs.@12,13,15#. In particular, a KAM theorem was prove
for this family in Ref. @15# based on Thirring’s approac
@16#, in which the KAM transformations are constructe
such that the iteration stays within the space of Hamiltoni
quadratic in the actions. In order to prove the existence o
torus with frequency vectorv0 for Hamiltonian systems de
scribed by Eq.~1.1!, it is not necessary to eliminatem, but
only g and f : One has to find a canonical transformati
such that the equations of motion expressed in the new
ordinates show trivially the existence of this torus. For t
family of Hamiltonians~1.1!, if one takesg and f equal to
zero, then the resulting equations of motion are

dA

dt
52

1

2

]m

]w
~V•A!2,

dw

dt
5m~w!~V•A!V1v0 .

~1.2!

ThenA50 defines an invariant torus, and the motion on t
torus is quasiperiodic with frequency vectorv0 ~even if the
resulting Hamiltonian is not integrable!.

The elimination off andg can be achieved with canon
cal transformations with generating functions that are lin
in the action variables, and thus map the family of Hamil
nians~1.1! into itself. This is very convenient numerically, a
one only works with three scalar functionsm, g, and f . The
only approximation involved in our numerical implement
tion of the transformation is a truncation of the Fourier ser
of these functions; e.g., we approximate

f ~w!5 (
nPZ2

f nein•w ~1.3!

by

f [<L]~w!5 (
nPCL

f nein•w, ~1.4!

whereCL5$nPZ2u un1u<L,un2u<L%.
In this paper, we focus on the frequency vectorv0

5(1/g,21), associated with the golden meang5(1
1A5)/2. We choose the set of frequenciesI 2 describing the
nonslow modes as the union of the two quadrants in
plane (n1 ,n2) that contain the linear span ofv0:

I 25$nPZ2un1n2<0%. ~1.5!

The setI 2 is depicted in Fig. 2.
This ‘‘frequency cutoff’’ restricts to Fourier modes~the

nonslow modes! that can be eliminated in one renormaliz
tion step, without running into small denominator problem
As is common with cutoffs, there is not a single ‘‘natura
choice. Other possible choices ofI 2 will be mentioned later.
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II. KAM-RENORMALIZATION-GROUP
TRANSFORMATION

The renormalization scheme described in this section
for a torus of frequency vectorv05(1/g,21) where g
5(11A5)/2. It is straightforward to adapt it to other re
duced quadratic irrationals@17#.

Our transformation is composed of four steps.
~1! A canonical change of coordinates, which acts on

Fourier mode ein•w for a resonancen5nk by a shift
nk°nk22. The resonances fork,2 will be eliminated in
step~4!, together with all the other frequency vectors inI 2.

~2! A generalized canonical change of coordinates wh
corresponds to a rescaling of the action variablesA.

~3! A normalization corresponding to a rescaling of t
energy~or time!.

The composition of the three steps described so far
fines a map (m,g, f ,a)°(m8,g8, f 8,a8).

~4! A KAM transformation ~canonical change of vari
ables! that eliminates all nonslow modes fromg8 and f 8; i.e.,
the new functionsf 9 andg9 are in the range ofI2, whereI2

is a projection operator acting on a scalar functionf of the
angles as

I2 f ~w!5 (
nPI 2

f nein•w. ~2.1!

Concerning step~4! we note that, for certain purposes, it ca
be desirable to eliminate the nonslow modes fromm8 as
well. But such a step generates terms of arbitrary order in
actions, which drastically complicates the analysis@18#.

We now give a more detailed description of the four ste
that define the transformation. The first step is motivated
the observation that periodic orbits for the resonant frequ
cies$nk% accumulate geometrically at the~critical! v0 torus.
This suggests that the appropriate scaling~in the angle vari-
ables! is related to a shift in the sequence of resonances
order to implement the shiftnk°nk22 mentioned in step~1!,
we use the fact that the continued fraction approximants
the golden meang are gk5Fk11 /Fk , whereFk is the kth
Fibonacci number. These numbers can be defined recurs
by the equation

S Fk11

Fk
D 5NS Fk

Fk21
D with N5S 1 1

1 0D , ~2.2!

FIG. 2. Nonslow modes~in the gray part! and slow modes~in
the white part! associated withv05(1/g,21).
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starting withF050 andF151. In other words, if we define
n05(0,1), thennk5Nnk21 for k>1. Thus the desired shif
nk°nk22 is induced by the linear transformationN22, and
the canonical transformation we are looking for
(A,w)°(N22A,N2w).

As the renormalization changes the scale, some of
slow modes become nonslow modes@e.g., (1,1) is mapped
into (0,1) which is an element ofI 2#. We remark that there
is no intrinsic sharp difference between the slow and n
slow modes. The boundary can be set at different places.
have chosen to include the coefficients (0,1) and (1
among the nonslow modes (I 2, to be eliminated by the
KAM transformation! and (1,1) and (2,1) among the slo
modes. But conceptually and practically there would be
difficulty to include, e.g., (1,1) and (2,1)~or any fixed finite
number of resonances! among the nonslow modes. Mor
generally, other choices in the splitting of$ein•w% into slow
and nonslow modes should lead to the same results provi
e.g., that the ratiounu/uv0•nu is bounded onI 2 and thatN2k

contracts vectorsn in the complement ofI 2 for some fixed
k.0 @11#.

The linear shift of the resonances multipliesv0 by g22

(v0 is an eigenvector ofN); therefore we rescale the energ
by a factorg2 in order to keep the frequency fixed atv0. A
consequence of the shift of the resonances is thatV
5(1,a) is changed into V85(1,a8), where a85(a
11)/(a12).

Then we perform a rescaling of the action variables:
change the HamiltonianH into

Ĥ~A,w!5lHS A

l
,wD ,

with l5l(H) such that the mean value ofm8, defined as

^m8&5E
T2

d2w

~2p!2
m8~w!, ~2.3!

is equal to 1. Since the rescaling of energy and the shiftN2

transform the quadratic term of the Hamiltonian intog2(2
1a)2m(w)(V8•A)2/2, this condition leads tol5g2(2
1a)2^m&.

In summary, the first three steps of our renormalizat
transformation rescalem, g, f , andV5(1,a) into

m8~w!5
m~N22w!

^m&
, ~2.4!

g8~w!5g2~21a!g~N22w!, ~2.5!

f 8~w!5g4~21a!2^m& f ~N22w!, ~2.6!

a85
11a

21a
. ~2.7!

We remark that the mapV°V8 given by Eq.~2.7! has an
attractive fixed pointV* 5(1,g21), which is an eigenvecto
of N2, with eigenvalueg2.1.

The fourth step is carried out via an iterative procedu
similar to a Newton algorithm. We start withH05H8. To
simplify the description of the iteration stepHn°Hn11, con-
e

-
e

)

o

d,

e

n

,

sider first the case wheregn and f n depend on a~small!
parameter«n , in such a way thatI2gn andI2 f n are of order
O(«n). The idea is to eliminate the nonslow modes ofgn and
f n to first order in«n , at the expense of adding terms that a
of orderO(«n) in the slow modes and of orderO(«n

2) in the
nonslow modes.

We will work with Lie transformations
Un :(wn21 ,An21)°(wn ,An), generated by a functionSn lin-
ear in the action variables, of the form

Sn~A,w!5Yn~w!V8•A1Zn~w!1anV8•w, ~2.8!

characterized by two scalar functionsYn , Zn , and a constant
an . The expression of the Hamiltonian in the new variab
is obtained by the following equation@19,20#:

Hn115Hn+Un5e1Sn
ˆ

Hn

[Hn1$Sn ,Hn%1
1

2!
ˆSn ,$Sn ,Hn%‰1•••. ~2.9!

A consequence of the linearity ofSn in A is that the Hamil-
tonianHn11 is again quadratic in the actions and of the for

Hn11~A,w!5
1

2
mn11~w!~V8•A!21@v01gn11~w!V8#•A

1 f n11~w!. ~2.10!

We notice that the vectorV8 remains unchanged from on
step to the next. The functionsYn , Zn , and the constantan
are chosen in such a way thatI2gn11 and I2 f n11 vanish to
order O(«n); see the Appendix for details. Consequent

I2gn11 and I2 f n11 are of orderO(«0
2n

), where«0 denotes
the order ofI2g8 andI2 f 8. If «0 is small, an iteration of this
procedure should define a canonical transformationUH
5U1+U2+•••+Un+••• such that the Hamiltonian expresse
in these new variables has only slow modes ing and f . In
our numerical implementation this is indeed the case, e
without small parameters.

In summary, our renormalization-group~RG! transforma-
tion acts as follows: First, some of the slow modes~resonant
part of the perturbation! are turned into nonslow modes by
frequency shift and a rescaling. Then, a KAM-type iterati
eliminates these nonslow~nonresonant! modes, while pro-
ducing some new slow modes.

III. DETERMINATION OF THE CRITICAL COUPLING:
FIXED POINT OF THE KAM-RG TRANSFORMATION

We start with the same initial Hamiltonian as in Ref
@8,12,13#,

H~A,w!5
1

2
~V•A!21v0•A1« f ~w!, ~3.1!

whereV5(1,0), v05(1/g,21), g5(11A5)/2, and a per-
turbation

f ~w!5cos~n1•w!1cos~n2•w!, ~3.2!

wheren15(1,0) andn25(1,1). We represent all the func
tions by their Fourier series truncated by retaining only
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57 6615UNIVERSALITY FOR THE BREAKUP OF INVARIANT . . .
coefficients in the squareCL which contains (2L11)2 Fou-
rier coefficients. For fixedL, we take successively large
couplings« and determine whether the KAM-RG iteratio
converges to a Hamiltonian withf 50, g50 ~trivial fixed
point!, or whether it diverges (f ,g→`). By a bisection pro-
cedure, we determine the critical coupling«c(L). We repeat
the calculation with larger numbers of Fourier coefficients
obtain a more accurate approximation. Table I lists so
values of«c(L). For instance, forL510, the result is given
with seven digits; as a comparison, the method develope
Refs.@12,13# yields four significant digits@in order to obtain
seven significant digits with this method one needs to ca
late «c(L) up to L534#. Moreover, we observe the disap
pearance of the oscillations of Fig. 1 of Ref.@12#; that is to
say, the present method converges much faster than the
of Refs.@12,13#.

By iterating the transformation starting from a point o
the critical surface, we observe that the process converge
a nontrivial fixed pointH* ~or more generally to a nontrivia
fixed set related to this nontrivial fixed point by symmetri
@13,21#!, which we characterize by the Fourier coefficients
the three functionsm* , g* , and f * andV* 5(1,g21).

Figures 3 and 4 show the weight of the Fourier coe
cients of m* . We observe that these coefficients decre
only slowly in the direction ofv0 and, in particular, along
the rescaled resonancesN2kn1, k>0, which indicates that
m* is not analytic. This is due to the fact that our transfo
mation does not eliminate the nonslow modes ofm ~for the
reasons mentioned earlier!.

Figures 5 and 6 show the weight of the Fourier coe
cients for the functionsg* and f * , respectively. These co
efficients seem to decrease exponentially, which indica
that g* and f * are real analytic. Notice also that, by co
struction,g* and f * have only slow modes.

At the fixed pointH* , we compute the relevant eigenva
ues~critical exponents! for the linearized KAM-RG transfor-
mation. Since the breakup of invariant tori is observed
one-parameter families of Hamiltonians, indicating that
critical surface is of codimension 1, one expects to find
simple eigenvalued.1, and no other spectrum outside th
open unit disk. This is precisely what we find numerical
Table I lists the values ofd as a function ofL. We obtain
dP@2.650 175,2.650 226#, which is in agreement with the
value obtained by MacKay for area-preserving maps@9# (d
52.650 221).

TABLE I. Parameters associated with the breakup of noble to

L Critical value«c(L) Area multiplier Unstable eigenvalue

0.027590 18.828171 2.650221

3 0.027625 18.842654 2.649660
5 0.027579 18.823481 2.652722
8 0.027588 18.825034 2.649653
12 0.027590 18.829142 2.650484
13 0.027590 18.827464 2.650082
20 0.027590 18.828203 2.650234
21 0.027590 18.827772 2.650151
33 0.027590 18.828177 2.650226
34 0.027590 18.827910 2.650175
o
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in
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If the renormalization-group picture is correct, then all t
relevant information about critical tori with frequency vect
v05(1/g,21) is contained in the nontrivial fixed pointH* .
In particular,H* determines the observed critical scaling
phase space@5,6,8#. For the scaling factorl* 5l(H* ), we
obtain numericallyl* P@18.827 910,18.828 177#; the value
obtained for area-preserving maps isl* 518.828 171~given
in Refs.@5,6,9#!.

IV. CONCLUSION

We have shown that in the renormalization-group a
proach to critical invariant tori, a partial elimination of non
resonant frequencies leads to substantial qualitative
quantitative improvements. Compared with previo
schemes that have been studied numerically, our n
KAM-RG transformation yields more accurate results an
better defined domain of attraction for the nontrivial fixe
point. Conceptually it is close to the type of transformatio
used for the study of critical phenomena in statistical m
chanics.

We have implemented our transformation for the case
tori with frequency vectorv05(1/g,21), whereg is the
golden mean. The extension to other reduced quadratic
tionals should be straightforward and yields similar results
also seems possible to extend our transformation to syst
with three @22# and more degrees of freedom@11#, where
very little is known about the behavior of invariant tori und
perturbations that are not necessarily small@23,24#.

There are several open questions within the present
related approaches that need to be clarified to obtain a c
plete theory of the phenomena: First, the relation betw
the self-similarity of the nontrivial fixed point Hamiltonia
and the geometrical properties of the critical invariant t
has to be established. At this stage, there is only numer
evidence for the coincidence between the critical coupl
and scaling coefficients we obtain and the corresponding

.

FIG. 3. Weight of the Fourier coefficients ofm* : white
,10210, gray levels @10210,1027#, @1027,1025#, @1025,1023#,
@1023,531022#, black .531022.
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6616 57C. CHANDRE, M. GOVIN, H. R. JAUSLIN, AND H. KOCH
rameters associated with the critical torus as obtained
Refs.@5,6# by explicit construction using the Greene’s crit
rion. Another point concerns the regularity properties of
nontrivial fixed point. The part of the Hamiltonian that
quadratic in the actions does not seem to be analytic in
angle variables. But the resulting truncation error seem
have little effect on the accuracy of the calculated criti
parameters. We lack a good understanding of this obse
tion.
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APPENDIX: ONE STEP OF THE KAM ITERATION

In this appendix, we use the notation­f 5] f /]w.
We consider a Hamiltonian of the form~1.1!, with g

5(12I2)G1«I2G and f 5(12I2)F1«I2F. The param-
eter« is introduced for bookkeeping purposes only; it will b
set to 1 at the end. Our goal is to find a canonical trans
mation U such that the functionsf 8 and g8 for the Hamil-
tonianH85H+U have only slow modes, up to terms of ord
O(«2). We perform a Lie transformation defined in Sec.
The expression of the Hamiltonian in the new variables
given by Eq.~2.9!:

H8~A8,w8!5
1

2
m8~w8!~V•A8!21@v01g8~w8!V#•A8

1 f 8~w8!, ~A1!

where

g85g1v0•­Y1m~V•­Z1aV2!1O~«2!, ~A2!

FIG. 4. Weight of the Fourier coefficients ofm* : M (n1)
5maxn2

um* nu.
in

e

e
to
l
a-

-
.

r-

s

f 85 f 1v0•­Z1av0•V1O~«2!, ~A3!

with Y, Z, anda of orderO(«) to be determined. The gen
erating functionS given by Eq.~2.8! is determined by the
projection of Eqs.~A2! and ~A3! on the space of nonslow
modes. We recall that the condition is thatI2 f 8 andI2g8 are
of orderO(«2). This leads to the following equations:

I2 f 1v0•­Z5const, ~A4!

I2g1v0•­Y1I2~mV•­Z!1I2maV250. ~A5!

FIG. 5. Weight of the Fourier coefficients ofg* : white
,10210, gray levels @10210,1027#, @1027,1025#, @1025,1023#,
@1023,531022#, black .531022.

FIG. 6. Weight of the Fourier coefficients off * : white
,10210, gray levels @10210,1027#, @1027,1025#, @1025,1023#,
@1023,531022#, black .531022.
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Equation~A5! determinesa:

a52
^g&1^mV•­Z&

V2^m&
. ~A6!

Moreover, the functionsY andZ have only nonslow modes
and are given by the following series:

Z~w!5 (
nPI 2*

i

v0•n
f nein•w, ~A7!

Y~w!5 (
nPI 2*

i

v0•n
@gn1~mV•­Z!n1mnaV2#ein•w,

~A8!

where I 2* 5I 2\$0%. The transformed Hamiltonian~A1! is
constructed by definingH (0)5H andH ( i ) for i 51,2, . . . by
the recursive relation

H ~ i 11!~A,w!5$S~A,w!,H ~ i !~A,w!%5
1

2
m~ i 11!~w!~V•A!2

1g~ i 11!~w!V•A1 f ~ i 11!~w!, ~A9!

which leads to
il-
tes

s

r

H85(
i 50

`
H ~ i !

i !
. ~A10!

This can be expressed in terms of the image of the th
scalar functions (m,g, f ) given by the following equations:

~m8,g8, f 8!5S (
i 50

`
m~ i !

i !
,(
i 50

`
g~ i !

i !
,(
i 50

`
f ~ i !

i ! D , ~A11!

~m~0!,g~0!, f ~0!!5~m,g, f !, ~A12!

m~1!52mV•­Y2YV•­m, ~A13!

g~1!5gV•­Y2YV•­g1mV•­Z1maV21v0•­Y,
~A14!

f ~1!52YV•­f 1gV•­Z1gaV21v0•­Z, ~A15!

m~ i 11!52m~ i !V•­Y2YV•­m~ i !, ~A16!

g~ i 11!5g~ i !V•­Y2YV•­g~ i !1m~ i !V•­Z1m~ i !aV2,
~A17!

f ~ i 11!52YV•­f ~ i !1g~ i !V•­Z1g~ i !aV2, ~A18!

for i>1.
o.

l

s

e-

,
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